Adaptive intelligent speed control of switched reluctance motors with torque ripple reduction

نویسندگان

  • Majid Hajatipour
  • Mohammad Farrokhi
چکیده

Switched Reluctance (SR) motors have a wide range of applications in industries, mainly due to the special properties of this motor. But, because of its dynamical nonlinearities, its control is complex. This paper presents an adaptive intelligent control based on the Lyapunov stability theory to control the speed of SR motors with good accuracies and performances. The proposed controller composes of a speed controller and a torque controller. The main parts of the speed controller are two folds: a) the optimal controller, which is based on the Hamilton-Jacobi-Bellman theory and b) the intelligent controller, which is an adaptive fuzzy controller. The main features of the proposed speed controller are: 1) its independence to the exact parameters of the SR motor such as the inertia of rotor, the viscous friction, and the load torque, and 2) the robustness to inaccuracies and disturbances. Moreover, the torque ripple reduction is achieved by employing a neural network for torque estimation. The simulation results show good performance of the proposed controller in speed controlling and torque ripple reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torque Ripple Reduction in Switched Reluctance Motors by Rotor Poles Shape and Excitation Pulse Width Modification

In this paper, at first, a 24/16 three-phase switched reluctance motor is designed, then the rotor poles shape tips corrected for reduction ripple of single-phase torque waveform. By doing this, the single-phase torque waveform has a flat surface and consequently, the single-phase torque ripple is reduced. Also, due to the commutation between the machine phases, the torque drops during this tim...

متن کامل

Direct Torque Control of 5-Phase 10/8 Switched Reluctance Motors

A switched Reluctance motor (SRM) has several desirable features, including simple construction, high reliability and low cost. However, it suffers from large torque ripple, highly non-uniform torque output and magnetization characteristics and large noise. Several studies have succeeded in torque ripple reduction for SRM using Direct Torque Control (DTC) technique. DTC method has many adva...

متن کامل

Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based) adaptive sliding algorithm derived from the view point of energy dissipati...

متن کامل

A New Switched Reluctance Motor Design to Reduce Torque Ripple using Finite Element Fuzzy Optimization

This paper presents a new design to reduce torque ripple in Switched Reluctance Motors (SRM). Although SRM possesses many advantages in terms of motor structure, it suffers from large torque ripple that causes problems such as vibration and acoustic noise. The paper describes new rotor and stator pole shapes with a non-uniform air gap profile to reduce torque ripple while retaining its average ...

متن کامل

Adaptive torque-ripple minimization in switched reluctance motors

This paper addresses torque-ripple reduction in current-fed switched reluctance motors (SRMs). Ripple-free torque production in SRMs requires an accurate model that is often too complex for practical implementation. The algorithm proposed here combines the use of a simplified model with adaptation. Explicitly, it includes dynamic estimation of low harmonics of the combined unknown load torque a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008